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ABSTRACT 

In 2002, Tomita and Yamamuro defined several theorems for fundamental unit of certain 
real quadratic number fields. Although, there are infinitely many values of � having all 1s in 
the symmetric part of continued fraction expansion of  ��, Tomita and Yamamuro (1992) 
had described explicitly one type of � for the fundamental units of the real quadratic fields  
by using   Fibonacci sequence in the Theorem 3 for  � ≡ 2,3�	
�4� and  in the Theorem 2 
in the case of � ≡ 1�	
�4� (2002). The main purpose of this paper is to generalize and 
provide an improvement of the theorem 3 and the theorem 2 in the paper of Tomita and 
Yamamuro (2002). Moreover, the present paper deals with new certain formulas for 
fundamental unit �� and Yokoi’s � -invariants ��, 	�  in the relation to continued fraction 
expansion of ��  for such real quadratic fields. All results are supported by numerical tables. 
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1. Introduction 

  Let � = ℚ�√�� be a real quadratic number field where � > 0 is a positive 
square free integer. In real quadratic fields, integral basis element is denoted by �� = √� = � ��;  ��, ��, … ,  �ℓ�!�"�, 2��############################ $  for � ≡ 2,3�	
�4�  and  �� = �%√�� =� ��;  ��, ��, … ,  �ℓ�!�"�, 2�� − 1################################# $ for � ≡ 1�	
�4� where ℓ�d� is the period length 

in simple continued fraction expansion  of algebraic integer 
dw   The fundamental 

unit d
ε  of real quadratic number field is also denoted by�� =  ()% *)√�� > 1 where + , d

ε - = �−1�ℓ�!�. 
 

Determining the fundamental units of real quadratic fields is of great 
importance in the class number problem and the unit theorem since fundamental unit 
generates the unit group of real quadratic fields. Not all fundamental units are so easy 
to calculate practically, even for small values of �. So, this is very important to find a 
practical method so as to easily and rapidly determine fundamental unit ��. 

 
The theorem of Friesen (1988) and Halter-Koch (1991) was examined a 

construction of infinite families of real quadratic fields with large fundamental units. 
Kawamoto and Tomita (2008) were determined minimal type of continued fraction 
for certain real quadratic fields. Also, Zhang and Yue (2014) proved some 
congruences about the coffecient of fundamental unit. Benamar et al. (2015), 
considered the real numbers which their quotient ‘s elements are  �/ is the largest 
power of 2 dividing 0 + 1.  

 
By using coefficients of fundamental unit, Yokoi (1990, 1991, 1993) defined 

two significant invariants as  	� = 2*)3() 4  and �� = 5()*)36  where 789  represents the 

greatest integer not greater than 8 for class number problem and the solutions of Pell 
equation. 

 

Lower bound of fundamental unit  �� =  ()% *)√�� > 1  of � = ℚ�√��  was 

studied by Sasaki (1986) and Mollin (1996).  
 

Originally, we examine the continued fraction expansions which have partial 
quotient elements repeated as 1s in the period length for  ��  where  � is a square 
free integer. Although there are infinitely many values of �  having all 1s in the 
symmetric part of the period of continued fraction expansion of integral basis 
element, Tomita and Yamamuro (2002) described explicitly one type of � ′s in their 
paper for determining the fundamental units of the real quadratic fields.  
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We get infinitely many new real quadratic fields which have got  the form of  �� = ; ��; 1,1, … ,1<=>=?ℓ"� , 2 ��################# @  or  �� = ; ��; 1,1, … ,1<=>=?ℓ"� , 2 �� − 1###################### @  where � ≡2,3�	
�4�  or � ≡ 1�	
�4�  respectively for the parametrization of square free 
positive integer �. 

 
In this paper, we also classify the real quadratic fields in the main theorems 

according to arbitrary period length. For the classifications,we also determined the 
general forms of fundamental units ��   and coefficents of fundamental units  A�, B�   
in the terms of fibonacci sequence. Then, we get a fix on Yokoi’s invariants and 
support all results with tables by the specialization. Also, we should say that the 
results obtained in this paper useful in the literature of class field theory. 

 
 

2. Preliminaries 

We need following definitions and lemmas which are useful for results in the  
next section. 

 

Definition 2.1. CD/E is called as Fibonacci sequence if it is defined by the recurrence 
relation, D/ = D/"� + D/"� 

 
for 0 ≥ 2, with seed values  D� = 0 and  D� = 1.   
 

Note. For the set G��� of all quadratic irrational numbers in ℚ�√��, we say that H in G��� is reduced if H > 1,−1 < H′ < 0, (HJ is the conjugate of H with respect to ℚ), 
and denote by K��� the set of all reduced quadratic irrational numbers in G���.Then, 
it is well known that any number H  in K���  is purely periodic in the continued 
fraction expansion and the denominator of its modular automorphism is equal to 

fundamental unit �� of  ℚ�√��. 
 

Lemma 2.2. Let �  be a square-free positive integer such that �  congruent to 1 

modulo 4 . If we put �� = �% √�� , �� = L��M  into the �N = ��� − 1�  + �� , then ��  ∉  K��� but �N ∈  K���holds. Moreover, for the period Q = ℓ�d� of �N, we get �N =  L2�� − 1, ��, . . . , �R"�#########################Mand �� = L��, ��, . . . , �R"�, 2�� − 1#########################].  
 

Let �N = �STUV%STWX��YTUV%YTWX� = L2�� − 1, ��, . . . , �R"�, �N##############################M  be a modular automorphism 

of �N, then the fundamental unit Z� of [�√��  is given by the formulae 
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�� =  A� + B�√�2   
A� = �2�� − 1�. [ℓ���  +  2[ℓ���"� , B� =  [ℓ��� 

where [/  is determined by [� = 0,[� = 1 and [/%� =  �/[/  +  [/"� �0 ≥  1�. 

 

Proof. Proof is in Tomita  (1995). 
 

Lemma 2.3. For a square free positive integer � congruent to 2,3 modulo 4, we put �� = √� and �� = \√�] into the �N = �� + �� . Then �� ∉ K���, but �N ∈ K ��� 
holds. Moreover, for the period Q = Q��� of �N, we get 
 

�N = ^ 2��,  ��, ��, … ,  �R���"�<======>======?ℓ���
############################ _ 

 
and 

 
   �� = ���;  ��, ��, … ,  �R���"�, 2��############################ $. 

   
  

Furthermore, �N = UVST%STWX UVYT%YTWX =  �  2��, ��, ��, … ,  �R���"�, �N$  be a modular 

automorphism of �N . Then the fundamental unit ��  of [�√��  is given by the 
following formula: 
 �� =  A� +  B�√�2 = ��� + √��[ℓ��� + [ℓ���"� 

 A� = 2��[ℓ��� + 2[ℓ���"�  and B� = 2[ℓ���   
 

where [/  is determined by [� = 0, [� = 1 and [/%� = �/[/ + [/"�  �0 ≥ 1�. 
 

Proof. It can be proved in a similar way of previous  lemma. 
 

Lemma 2.4. Let � ≡ 2,3�	
�4�  be a square free positive integer and  �� = \√�]  

denote the integer part of ��  = √�  for � ≡ 2,3 �	
�4�.If we consider ��  which 
includes partial constant elements repeated 1s in the case of period Q = Q���, then we 
have the continued fraction expansion as the form of 
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�� = √� = � ��;  ��,  ��, … ,  �ℓ�!�"�,  �ℓ�!�############################### $ = L ��; 1,1, … ,1, 2��################ M 
 �N =  �� + √� = L 2��, 1, , … ,1############### M 

 
for integral basis element and reduced integral basis element respectively. 

 
Furthermore, `a = ��Da%� + Da  and  ba = Da%�  are determined in the 

continued fraction expansion of ��   where C`aE and CbaE are two sequences defined 
by : `"� = 0   , `"� = 1   , `a = �a`a"� + `a"�   

 b"� = 1  , b"� = 0   ,  ba = �ab + ba"�   

 

for 0 ≤ � ≤ ℓ��� − 1 and   
 d̀ = 2���Dℓ�!� + 3��Dℓ�!�"� + Dℓ�!�"�   

 b = 2��Dℓ�!� + Dℓ�!�"�                  
 

for � = ℓ�d� where Q = ℓ�d� is period length of �� = √� and ed = d̀ bdf   is the  g(h 

convergent in the continued fraction expansion of √�. 
 

Moreover, id = 2��Dd + Dd"�  and  [d = Dd  are  determined in the continued 

fraction Lj�, j�, jk … , jl, … M = L 2��, 1, 1, … ,1, … M , where midn  and m[dn  are two 
sequences defined by: 

 i"� = 0   , i� = 1, id%� = jd%�id + id"� and 
 ["� = 1  , [� = 0,  [d%� = jd%�[d + [d"�   

for g ≥ 0. 
 

Proof. We can prove by using mathematical induction. Using the following table 
which includes values of `a, ba and �a, we can easily say that this is true for � = 0. 
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Table 1: (Converge of L ��; 1,1, … ,1, 2��################ M for Q = Q���) 

 

o -2 -1 0 1 2 3 4 
 

… 

 po 
 

 
 

 �� 
 
1 

 
1 

 
1 

 
1 

 
… 

 qo 

 
0 

 
1 

� ���  ��D� + D� 
��� + 1�  ��D� + D� 

�2 �� + 1�  ��Dk + D� 
� 3�� + 2�  ��Dr + Dk 

(5 �� + 3� ��Ds + Dr 
 

… 

 to 

  
1 

0 D� 
1 D� 

1 D� 
2 Dk 

3 Dr 
5 Ds 

 
… 

 

Now, we assume that the result true for � < 0 and 0 ≠ Q. Using the defined 
the fibonacci sequence, we obtain (�/ = 1 for 1≤ 0 ≤ Q − 1) 

 

1 1 1k k k k
A a A A

+ + −
= +  = ���Da%� + Da� +  ���Da + Da"�� 

                                       = ���Da%� + Da� + �Da + Da"�� 

                                         = ��Da%� + Da%� 

 

1 1 1k k k kB a B B
+ + −

= + = Da%� + Da= Da%� 

 

Moreover, since �R = 2�� we get the following result : 

 
2
0 0 1 22 3

l l l l
A a F a F F

− −
= + +  

0 12l l lB a F F
−

= +     ( for � = Q��� ) 

 

Furthermore, in the continued fraction Lj�, j�, jk … , jl, … M = L 2��, 1, 1, … ,1, … M , 
we have following table and this completes the proof.  
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Table 2: (Converge of L 2��, 1, 1, … ,1, … M) 
 

 o 

 

-1 

 

0 

 

1 

 

2 

 

3 

 

4 

 
… vo   

 
 

2 �� 
 

1 
 

1 
 

1 
 

… 

wo  
0 

 
1 

�2 ��� 2 ��D� + D� 
�2 �� + 1� 2 ��D� + D� 

�4 �� + 1� 2 ��Dk + D� 
�6 �� + 2� 2 ��Dr + Dk 

 
… 

yo  
1 

0 D� 
1 D� 

1 D� 
2 Dk 

3 Dr 
 

… 

 

Note: By defining similar new lemma, we can also obtain similar tables in the case 

of  �� = �% √��  for � ≡ 1�	
�4�. 

 

Remark 2.5. We can also write characteristic equation for Fibonacci sequence as the 
form of  

Da =  1√5 {|1 + √52 }a − |1 − √52 }a ~ 

for � ≥ 0. 
 

Remark 2.6. Let CD�E be Fibonacci sequence. Then, we state the following: 

 

D�  ≡  � 0�	
�4�   ;  � ≡ 0�	
�6�     1�	
�4�     ;  � ≡ 1,2,5�	
�6�2�	
�4�   ;  � ≡ 3�	
�6�3�	
�4�   ;  � ≡ 4�	
�6�  

for n ≥ 0. 
 

3. Main Theorems and Results  

Main theorems and their results will be given with the notation of the 
preliminaries section as follows. 
 

Theorem 3.1. (Main Theorem 1). Let � be square free positive integer and ℓ ≥ 2 be 
a positive integer satisfying that 3 ∤ ℓ. Suppose that the parametrization of � is 
 
 



Özen Özer  
 

104           Malaysian Journal of Mathematical Sciences 
 

� = |�2H + 1�Dℓ + 12 }� + �2H + 1�Dℓ"� + 1 

 
where H ≥ 0 is a positive integer. Then following conditions hold: 
 
(1) If  ℓ ≡ 1�	
�6� and H is even positive integer then � ≡ 2�	
�4� holds. 
(2) If  ℓ ≡ 2�	
�6� and H is even positive integer then � ≡ 3�	
�4� holds. 
(3) If  ℓ ≡ 4�	
�6� and H is even positive integer then � ≡ 3�	
�4� holds. 
(4) If  ℓ ≡ 5�	
�6� and H is odd positive integer then � ≡ 2�	
�4� holds. 

 

In the ℚ�√�� real quadratic fields, we have  
  �� = ;���%���ℓ%�� ; 1,1, … ,1<=>=?ℓ"� , �2H + 1�Dℓ + 1###############################@ and ℓ = ℓ���  

for � ≡ 2,3�	
�4�.  
 

Additionally, we get the general form of fundamental unit �� and coefficients of 
fundamental unit A�, B� as follows: 

 �� = ����%���ℓ%�� + √�� Dℓ + Dℓ"�, 

 A� = �2H + 1�Dℓ� + Dℓ + 2Dℓ"�    and    B� = 2Dℓ 
 

Proof. It is clear that  � ∉ �% for all ℓ ≡ 0 �	
�3� since Remark 2.6. We assume 
that 3 ∤ ℓ  ,ℓ ≥ 2 in order to get � ∈ �% . Originally, we have to show that four 
conditions hold as the followings: 
 
(1) If  ℓ ≡ 1 �	
�6�,  then Dℓ ≡ 1�	
�4�  and  Dℓ"� ≡ 0�	
�4� hold. If we 

consider that H is any even positive integer, then we obtain � ≡ 2�	
�4� by 
substituting these equivalences into the parametrization of  �. 
 

(2) If we consider  ℓ ≡ 2�	
�6� , then we have Dℓ ≡ 1�	
�4�  and  Dℓ"� ≡1�	
�4�. By substituting these values into parametrization of  � and 
rearranging, we obtain � ≡ 3�	
�4�  for any H even positive integer. 

(3) If ℓ ≡ 4�	
�6�, then we have Dℓ ≡ 3�	
�4�  and  Dℓ"� ≡ 2�	
�4�.  By 
substituting these equivalences into the parametrization of �,  we get � ≡3�	
�4� where H is any even positive integer. 
 

(4) If  ℓ ≡ 5�	
�6� and H is odd positive integer then we get Dℓ ≡ 1�	
�4� and  Dℓ"� ≡ 3�	
�4�. So, we obtain � ≡ 2�	
�4�. 
 
Hence, conditions are satisfied. 
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By using Lemma 2.3 and Lemma 2.4,  we  get 
 �N = |�2H + 1�Dℓ + 12 } + ;�2H + 1�Dℓ + 12 ; 1,1, … ,1<=>=?ℓ"� , �2H + 1�Dℓ + 1###############################@ 

           ⇒   �N = ��2H + 1�Dℓ + 1� + 11 + 11 + 1
          ⋱                                   + 11 + 1�N

   
= ��2H + 1�Dℓ + 1� + 11 + ⋯ + 11 + 1�N  

 
Using Lemma 2.3 and the properties of continued fraction expansions, we have 
 �N = ��2H + 1�Dℓ + 1� +   Dℓ"��N + Dℓ"�Dℓ�N + Dℓ"�  

 
If we rearrange the above equation, we obtain  
 �N� − ��2H + 1�Dℓ + 1��N − �1 + �2H + 1�Dℓ"�� = 0 

 

This implies that   �N = ����%���ℓ%�� � + √�  since �N > 0.  If we consider 

Lemma 2.3 and Lemma 2.4, we get 
 

 √� = ;���%���ℓ%�� ; 1,1, … ,1<=>=?ℓ"� , �2H + 1�Dℓ + 1###############################@   and ℓ = ℓ���.  
 

This shows that  �� = ;���%���ℓ%�� ; 1,1, … ,1<=>=?ℓ"� , �2H + 1�Dℓ + 1###############################@   holds. So, the 

first part of proof is completed. 
 

Now, we should determine ��, A�  and B�  using Lemma 2.3. We can get easily 
following equations: 

 

Q � = 0 = D�,  Q � = 1 = D�,    Q � = ��. Q � + Q � ⇒ Q � = 1 = D� 

Q k = �� Q � + Q � = D� + D� =Dk,   Q r = Dr,   … 
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So, this implies that [/ = D/  by using mathematical induction for ∀0 ≥ 0. If we 
substitute these values of sequence into the  

 �� =  A� +  B�√�2 = ��� + √��[ℓ��� + [ℓ���"� 

 
 and rearranged, we have �� = ����%���ℓ%�� + √�� Dℓ + Dℓ"�, 

 A� = �2H + 1�Dℓ� + Dℓ + 2Dℓ"�    and    B� = 2Dℓ 
 

which completes the proof of the Main Theorem 1.                      
 

Remark 3.2. Theorem 3.1 includes the parametrization of � depends on the arbitrary H positive integer parametre. The case that H=0 was tread in Tomita and Yamamuro 
(2002), but we should say that the present paper has got the most general theorem 
and results for such type of the real quadratic fields. Also, we can get infinitely many 

values of � which correspond to new ℚ�√�� for H ≥ 1 by using our results.  
     

 We obtain following results on Yokoi’s invariants as well as fundamental unit 
and continued fraction expansion. 

 

Corollary 3.3. Let � be square free positive integer and ℓ ≥ 2 be a positive integer 
satisfying that ℓ ≡ 5�	
�6�. Suppose that parametrization of � is 
 � = ,1 + 3Dℓ2 -� + 3Dℓ"� + 1 

 

then we have � ≡ 2�	
�4� and �� = ;�%k�ℓ� ; 1,1, … ,1<=>=?ℓ"� , 1 + 3Dℓ######################@ with ℓ = ℓ���.  

 

Additionally, we get the fundamental unit ��, coefficients of fundamental unit A�, B� and Yokoi’s invariant 	� as follows: 

 �� = ��%k�ℓ� + √�� Dℓ + Dℓ"�, 

 A� = 3Dℓ� + Dℓ + 2Dℓ"�    and    B� = 2Dℓ 	� = 1 
 

 
Besides, we state the following Table 3 where fundamental unit is ��, integral 

basis elemant is �� and and Yokoi’s invariant is 	� for  5 ≤ ℓ��� ≤ 23.  
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Table 3: Square-free positive integers d with 5 ≤ ℓ��� ≤ 23. 
 � ���� �� �� �� 

 
74 

 
5 

 
1 

 L8; 1,1,1,1,16#############M  

43+5√74 
 

18122 
 

11 
 

1 
 L134; 1,1, … ,1,268################M  

11981+89√18122 
 

5743778 
 

17 
 

1 
 L2396; 1,1, … ,1,4792##################M  

3827399+1597√5743778 
 

1847849330 
 

23 
 

1 
 �42986; 1,1, … ,1,85972###################$  

1231867513+28657√1847849330 

 
Proof. We create this result by subsituting H = 1 into the Main Theorem 1. We have 

to determine value of 	�. We know that 	� is defined as  	� = 2 *)3()  4  in Yokoi’s 

references. If we substitue A�  and B�  into the 	�, then we get 
 	� = �B��A� � = � 4Dℓ�3Dℓ� + Dℓ + 2Dℓ"�� 

 
Using assumption and the above equality, we get  
 2 >  | 4Dℓ�3Dℓ� + Dℓ + 2Dℓ"�} > 1,162 

 
since Fibonacci sequence is monotone increasing. Therefore, we obtain 	� =5 r�ℓ3k�ℓ3%�ℓ%��ℓWX6 = 1. This completes the proof of Corollary 3.3.  

 
Also, Table 3  which can be extended for the different values of ℓ��� is given  

numerical examples for Corollary 3.3. 
 

Corollary 3.4. Let �  be the square free positive integer and ℓ > 1 be a positive 
integer such that 3 ∤ ℓ, ℓ ≢ 5�	
�6�. We assume that the parametrization of � is 
 � = ,1 + 5Dℓ2 -� + 5Dℓ"� + 1 

 

then we get � ≡ 2,3�	
�4� and   �� = ;�%s�ℓ� ; 1,1, … ,1<=>=?ℓ"� , 1 + 5Dℓ######################@ and ℓ = ℓ���. 
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Moreover, we have following equalities : 
 

�� = �,1 + 5Dℓ2 - Dℓ + Dℓ"�� + Dℓ√� 

 
              A� = 5Dℓ� + Dℓ + 2Dℓ"�   and   B� = 2Dℓ 
 �� = �2    ; 0� ℓ = 2 1   ; 0� ℓ > 2  

 
for �� , A�, B� and Yokoi’s invariant ��. 
 

Besides, we state the following Table 4 where fundamental unit is ��, integral 
basis elemant is �� and Yokoi’s invariant is �� for 1 < ℓ��� ≤ 13. (In the following 
table, we rule out ℓ��� = 4,8,10 since d is not a square free positive integer in these 
periods). 
 

Table 4.: Square-free positive integers d with 2 ≤ ℓ��� ≤ 13. � ���� �� �� �� 

 
15 

 
2 

 
2 

 L3; 1,6####M  

4+ √15 
 

1130 
 

7 
 

1 
 L33; 1,1, … 1,66##############M  

437+ 13√1130 
 

340610 
 

13 
 

1 
 L538; 1,1, … 1,1166#################M  

135983+ 233√340610 
 

 
Proof. Corollary is obtained if we subsitute H = 2 into the Main Theorem 1. So, we 
have to determine the value of Yokoi d-invariant  ��. 
 
If we substitute A�  and B�  into the �� and rearranged, then we obtain 

 �� = � A�B��  � = �5Dℓ� + Dℓ + 2Dℓ"�4Dℓ� � 

 
 

If we put ℓ = 2 above equation, we get �� = 2. For ℓ > 2, by using 
 �� = 5 ()*)3  6 = 1+ 5 �r + �r�ℓ +  �ℓWX��ℓ3 6 

 
and considering that the Fibonacci sequence is monotone increasying, we obtain  
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 0 <  Dℓ� + Dℓ + 2Dℓ"�4Dℓ� < 0,293 

 

Hence, we determine the value of Yokoi’s invariant as �� =  5s�ℓ3%�ℓ%��ℓWXr�ℓ3 6 =1.  Besides, Table 3.2  is given as an illustrate of this corollary. 
 

Corollary 3.5. Let � be square free positive integer and ℓ ≥ 2 be a positive integer 
satisfying that  ℓ ≡ 5�	
�6�. If we choose the parametrization of � as the form of  
 � = ,7Dℓ + 12 -� + 7Dℓ"� + 1 

 

then � ≡ 2�	
�4� and   �� = ;��ℓ%�� ; 1,1, … 1,<=>=?ℓ"� 7Dℓ + 1####################@ with ℓ = ℓ���.  

 
Moreover, we get the fundamental unit ��  , coefficients of fundamental unit A�, B� and Yokoi’s invariant �� as follows: 

 �� = ���ℓ%�� + √�� Dℓ + Dℓ"�, 

 A� = 7Dℓ� + Dℓ + 2Dℓ"�    and    B� = 2Dℓ 
 �� = 1 
 

Furthermore, we state the following Table 5 where fundamental unit is �� , 
integral basis elemant is �� and and Yokoi’s invariant is �� for 5 ≤ ℓ��� ≤ 23.  

 
Table 5: Square-free positive integers d with 5 ≤ ℓ��� ≤ 23. 

 � ���� �� �� �� 

 
346 

 
5 

 
1 

 L18; 1,1,1,36########## M  
93+5√346 

 
97730 

 
11 

 
1 

 L312; 1,1, … ,1,624################ M  

27823+89√97730 
 

31255010 
 

17 
 

1 
 L5590; 1, … ,1,11180################# M  

8928217+1597√31255010 
 

10060213978 
 

23 
 

1 
 L100300; 1, … 1,200600################## M  

2874314811 +  
28657√10060213978 
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Proof. This claim is obtained if we subsitute  H = 3  into the Main Theorem 1. It is 

sufficient to determine Yokoi’s invariant value of �� = 5 ()*)3 6. 
 
If we substitue A�  and B�  into the ��, then we get 

 �� = � A�B��  � = �7Dℓ� + Dℓ + 2Dℓ"�4Dℓ� � 

 
Since CDℓE is monotone increasing, we  get following inequality  
  1 <  7Dℓ� + Dℓ + 2Dℓ"�4Dℓ� ≤ 1,86 

 

for ℓ ≥ 2. Therefore, we obtain �� =  5��ℓ3%�ℓ%��ℓWXr�ℓ3 6 = 1 which completes the proof 

of Corollary 3.5. For the numerical examples, we  give the Table 5. 
 
Theorem 3.6. (Main Theorem 2) Let � be square free positive integer and ℓ ≥ 2 be 
a positive integer.  
 
(1)  We suppose that  

 � = �2HDℓ + 1�� + 8HDℓ"� + 4 
 

where H > 0 is a positive integer. In this case, we obtain that d ≡ 1�mod4� and 
 �� = ;HDℓ + 1; 1,1, … ,1<=>=?ℓ"� , 1 + 2HDℓ#######################@ 

 
with ℓ = ℓ���. Moreover, we get    
 A� = 2HDℓ� + Dℓ + 2Dℓ"�    and    B� = Dℓ 

for �� = ()%*)√�� . 
 

(2) In the case that  ℓ ≡ 0�	
�3�, if we assume that  
 � = �HDℓ + 1�� + 4HDℓ"� + 4 

 

for  H > 0  positive odd integer, then d ≡ 1�mod4� and  
 �� = ;1 + ��ℓ� ; 1,1, … ,1<=>=?ℓ"� , 1 + HDℓ######################@. 
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Also, in this case  A� = HDℓ� + Dℓ + 2Dℓ"�    and    B� = Dℓ 
 

hold for  �� = ()%*)√�� . 
 

Remark 3.7. it is clear that Dℓ  is odd number if ℓ ≢ 0�	
�3�  holds. 
��ℓ�   is not 

integer if we substitue H odd integer  into the papametrization of d  fin the case of ℓ ≢ 0�	
�3�. So, we assume that ℓ is divided by 3 in the case of (2). Also, if we 
choose H is even integer, the parametrization of �  coincides with the case of (1). 
That's why we assume ℓ ≡ 0�	
�3� and H > 0  positive odd integer in the case of 
(2).                    

 

Proof. (1) For any ℓ ≥ 2  and H > 0  positive integer, � ≡ 1�	
�4�  holds since �2HDℓ + 1� is odd integer. From Lemma 2.2, we know that �� = �% √�� , �� = L��M 
and �N = ��� − 1�  + ��. 
 
By using these equations, we obtain                     �N = HDℓ + ;HDℓ + 1; 1,1, … ,1<=>=?ℓ"� , 1 + 2HDℓ#######################@ 

⇒   �N = �1 + 2HDℓ� + 11 + 11 + 1
          ⋱                                   + 11 + 1�N

   

 

          = �1 + 2HDℓ� +  �� + ⋯ + �� + �UV   

By a straight forward induction argument, we have  
 �N = �1 + 2HDℓ� +  + Dℓ"��N + Dℓ"�Dℓ�N + Dℓ"�  

 
Using Definition 2.1 into the above equality, we obtain  
 �N� − �1 + 2HDℓ��N − �1 + 2HDℓ"�� = 0 
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This implies that   �N = ����ℓ%��%√� �  since �N > 0. If we consider Lemma 

2.2, we get 
�%√� � = ;1 + HDℓ; 1,1, … ,1<=>=?ℓ"� , 1 + 2HDℓ#######################@ and ℓ = ℓ���. Proof of the first 

part of (1) is completed.  
Now, we have to determine ��, A�  and B�  using Lemma 2.2. It is easily seen 

that [/ = D/ �0 ≥ 0� by induction. 
 

 If we substitute the values of sequence into the coefficients of fundamental unit  
 A� = 2HDℓ� + Dℓ + 2Dℓ"�    and    B� = Dℓ 

holds for  �� = A�+B�√�2 . 
 
(2)  In the case of  ℓ ≡ 0�	
�3� , we get Dℓ ≡ 0�	
�2� . By subsituting this 
equivalence into the parametrization of  � , we have � ≡ 1�	
�4�  for  H > 0  
positive odd integer.  

 
        By using Lemma 2.2 and the parametrization of   � = �HDℓ + 1�� + 4HDℓ"� +4, we have 
 

  �N = ��� − 1� + �� ⇒     �N = ��ℓ� + ;1 + ��ℓ� ; 1,1, … ,1<=>=?ℓ"� , 1 + HDℓ######################@ 

        ⇒  �N = �1 + HDℓ� + ��% XX� X
          ⋱                                   � XX� X V   

 

      = �1 + HDℓ� + �� + ⋯ + �� + �UV   

 
By a straight forward induction argument, we get 
 �N = �1 + HDℓ� +  Dℓ"��N + Dℓ"�Dℓ�N + Dℓ"�  

 
Using Definition 2.1 into the above equality, we obtain  
 �N� − �1 + HDℓ��N − �1 + HDℓ"�� = 0 

 

This implies that   �N =  ��ℓ� + �%√� �  since �N > 0. If we consider Lemma 

2.2, we get 
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�%√� � = ;1 + ��ℓ� ; 1,1, … ,1<=>=?ℓ"� , 1 + HDℓ######################@ and ℓ = ℓ���. 
 
Using [/ = D/ for ∀0 ≥ 0, we obtain the coefficients of fundamental unit 
 A� = HDℓ� + Dℓ + 2Dℓ"�    and    B� = Dℓ 

for �� = ()%*)√�� . 
          
We can obtain following conclusions from Main Theorem 2.  
 

Remark 3.8. We can say similar things of Remark 3.2 for Main Theorem 2. 
 
Corollary 3.9. Let d be a square free positive integer congruent to 1 modulo 4. If we 
assume that � is satisfying the conditions in Main Theorem 2, then it always holds  
Yokoi’s invariant 	�=0.  
 

Proof. Yokoi’s invariant  	� is defined  	� = 2 *)3()  4  by Yokoi (1991-1993). In 

the case of  (1) if we substitue A�  and B�  into the 	�, then we obtain 
 
 	� = �B��A� � = � Dℓ�2HDℓ� + Dℓ + 2Dℓ"�     � 

 
 

So, we get  	�=0 since A� > B��   for H > 0 positive integer. 
 

In a similar way, we obtain 	� = 2*)3() 4 = 5 �ℓ3��ℓ3%�ℓ%��ℓWX    6 =0 with same 

reason (A� > B��  for H > 0 ) in the case of (2). 
 

Corollary 3.10.  Let � be the square free positive integer corresponding to ℚ�√�� 
holding  (1) in the Main Theorem 2. We state the following Table 6 where 
fundamental unit is ��, integral basis element is �� and Yokoi’s invariant is �� for  H = 1,2 and 2 ≤ ℓ��� ≤ 11. (In this table, we rule out ℓ��� = 6 for H = 1  and ℓ��� 
= 2 for H = 2  since d is not a square free positive integer.) 
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Table 6: Square-free positive integers d with 2 ≤ ℓ��� ≤ 11. 
 � H ���� �� �� �� 

21 1 2 5 L2; 1,3####M �5 + √21� 2¡
 

37 1 3 3 �3; 1,1, 5#######$ �12 + 2√37� 2f  

69 1 4 2 L4; 1,1, 7#######M �25 + 3√69� 2f  

149 1 5 2 L6; 1, … ,1,11############M �61 + 5√149� 2f  

797 1 7 2 L14; 1, … ,1, 27############M �367 + 13√797� 2f  

1957 1 8 2 L22; 1, … ,1, 43############M �929 + 21√1957� 2f  

4933 1 9 2 L35; 1, … ,1,69 #############M �2388 + 34√4933� 2f  

12597 1 10 2 L56; 1, … ,1, 111##############M �6173 + 55√12597� 2f  

32485 1 11 2 L90; 1, … ,1, 179##############M �16041 + 89√32485� 2f  

101 2 3 5 L5; 1,1,9######M �20 + 2√101� 2f  

205 2 4 4 L7; 1,1,1,13##########M �43 + 3√205� 2f  

493 2 5 4 L11; 1, … ,1,21############M �111 + 5√493� 2f  

1173 2 6 4 L17; 1, … ,1,33############M �274 + 8√1173� 2f  

2941 2 7 4 �27; 1, … ,1,53############$ �705 + 13√2941� 2f  
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Table 6 (continued) : Square-free positive integers d with 2 ≤ ℓ��� ≤ 11 
 � H ���� �� �� �� 

7437 2 8 4 �43; 1, … ,1,85############$ �1811 + 21√7437� 2f  

19109 2 9 4 L69; 1, … ,1,137##############M �4700 + 34√19109� 2f  

49389 2 10 4 L111; 1, … ,1,221##############M �12223 + 55√49389� 2f  

128333 2 11 4 �179; 1, … ,1,357##############$ �31883 + 89√128333� 2f  

 

 

Proof. This Corollary is obtained from main theorem by taking H = 1 or 2 in the 

case of (1) of Main Theorem 2. We know  �� is defined �� = 5()*)36. If we substitue A�  and B�  into the  ��, then we get 
 
 �� = �A�B��� = �2HDℓ� + Dℓ + 2Dℓ"�Dℓ� � = 2 + �Dℓ + 2Dℓ"�Dℓ� � 

 
for H = 1.  For  ℓ = 2,  we get �� = 5  as well as �� = 4  for ℓ = 3 . Since Dℓ  is 
monotone increasing sequence, we obtain 
 2,78 >  |2HDℓ� + Dℓ + 2Dℓ"�Dℓ� } > 2 

 
for  ℓ ≥ 4. Also, in the case of H = 2, we get �� = 5 for  ℓ = 3 besides  �� = 4 
for   ℓ ≥ 3  by using similar way. The proof of Corollary 2 is  completed. 
 

Corollary 3.11. Let �  be the square free positive integer positive integer 

corresponding to  ℚ�√��   holding  (2) in the Main Theorem 2. We state the 

following Table 7 where fundamental unit is ��, integral basis element is  �� and 
Yokoi’s invariant is  ��  for  H = 1,3 and  3 ≤ ℓ��� ≤ 12.  
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Table 7 : Square-free positive integers d with 3 ≤ ℓ��� ≤ 12. 
 � ¢ ���� �� �� �� 

 
17 

 
1 

 
3 

 
2 

 L2; 1,1,3######M  �8 + 2√17� 2f  

105 1 6 1 L5; 1, … ,1,9##########M �82 + 8√105� 2f  

1313 1 9 1 �18; 1, … ,1,35############$ �1232 + 34√1313� 2f  

21385 1 12 1 �73; 1, … ,1,145##############$ �21058 + 144√21385� 2f  

65 3 3 4 L4; 1,1,7######M �16 + 2√65� 2f  

689 3 6 3 �13; 1, … 1,25###########$ �210 + 8√689� 2f  

10865 3 9 3 L52; 1, … ,1,103##############M �3544 + 34√10865� 2f  

188561 3 12 3 L217; 1, … ,1,433##############M �62530 + 144√188561� 2f  

 

Proof. By subsituting H = 1  or 3 into the (2) of Main Theorem 2, we get this 
corollary and the table in the case of (2) of Main Theorem 2. If we substitue A�  

and B�  into the  �� = 5()*)36. then we get 

 �� = �A�B��� = �HDℓ� + Dℓ + 2Dℓ"�Dℓ� � = 1 + �Dℓ + 2Dℓ"�Dℓ� � 

 
for H = 1. We obtain �� = 2 for ℓ = 3 Since Dℓ is increasing sequence, we obtain 
 1,282 >  |HDℓ� + Dℓ + 2Dℓ"�Dℓ� } > 1 

 
for ℓ > 3. Also, if we take H = 3, we get  �� = 4  for  ℓ = 3 as well as �� = 3 for  ℓ > 3  in a similar way.  
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4. Conclusion 

Quadratic fields have applications in different areas of mathematics such as 
quadratic forms, algebraic geometry, discrete mathematics, diophantine equations, 
algebraic number theory, computer science and even cryptography. In this paper, we 
are interested in the concept of real quadratic number fields. We considered the 
continued fraction expansions, fundamental unit and Yokoi invariants in the terms of 
Fibonacci sequence. Also, we established general  important and interesting results 
for that.  Results obtained in this paper provide us a practical method so as to rapidly 
determine continued fraction expansion of  �� , fundamental unit �� and Yokoi 
invariants �� , 	�   for period length ℓ���. We are sure that these results help the 
researchers to enhance and promote their studies on quadratic fields to carry out a 
general framework for their applications in life. 
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